
CS 61A Data Abstraction & Sequences
Spring 2019 Discussion 4: February 20, 2019

1 List Comprehensions
new_lst = []

for <name> in <iter exp>:

if <filter exp>:

new_lst += [<map_exp>]

return new_lst

A list comprehension is a compact way to create a list whose elements are

the results of applying a fixed expression to elements in another sequence.

[<map exp> for <name> in <iter exp> if <filter exp>]

It might be helpful to note that we can rewrite a list comprehension as an

equivalent for statement. See the example to the right.

Let’s break down an example:

[x * x - 3 for x in [1, 2, 3, 4, 5] if x % 2 == 1]

In this list comprehension, we are creating a new list after performing a

series of operations to our initial sequence [1, 2, 3, 4, 5]. We only keep

the elements that satisfy the filter expression x % 2 == 1 (1, 3, and 5). For

each retained element, we apply the map expression x*x - 3 before adding

it to the new list that we are creating, resulting in the output [-2, 6, 22].

Note: The if clause in a list comprehension is optional.

Questions
1.1 What would Python display?

>>> [i + 1 for i in [1, 2, 3, 4, 5] if i % 2 == 0]

>>> [i * i - i for i in [5, -1, 3, -1, 3] if i > 2]

>>> [[y * 2 for y in [x, x + 1]] for x in [1, 2, 3, 4]]



2 Data Abstraction & Sequences

2 Data Abstraction
Data abstraction is a powerful concept in computer science that allows pro-

grammers to treat code as objects. That way, programmers don’t have to

worry about how code is implemented — they just have to know what it

does.

Data abstraction mimics how we think about the world. For example, when

you want to drive a car, you don’t need to know how the engine was built

or what kind of material the tires are made of. You just have to know how

to turn the wheel and press the gas pedal.

Data abstraction is useful when dealing with compound values, or values

that consist of more than one component. An example of such a value is a

rational number, or a number than can be written as x / y, which consists

of a numerator and a denominator.

We can represent these types of values as abstract data types (ADTs).

An abstract data type consists of two types of functions:

• Constructors: functions that build the abstract data type.

• Selectors: functions that retrieve information from the data type.

Below are possible function signatures for the constructor and selectors of a

rational number ADT:

rational(numerator, denominator)

numer(rational)

denom(rational)

Here is how we might use this constructor and these selectors:

>>> half = rational(1, 2)

>>> numer(half)

1

>>> denom(half)

2

The following function multiplies together two rational numbers, returning

a new rational number.

def mul_rational(x, y):

return rational(numer(x) * numer(y),

denom(x) * denom(y))



Data Abstraction & Sequences 3

Questions
The 61A TAs have decided to call upon the power of data abstraction to

organize their discussion sections. To do so, they’ve created a discussion

abstract data type. A discussion contains three things:

• The name of the TA running the section

• The time the section starts, given as an integer

• A list of students enrolled in the section

Given this, the TAs come up with the following constructor and selectors:

• make discussion(ta, time, students): Creates and returns a new

discussion section.

• get ta(disc): Returns the TA running the given discussion section.

• get time(disc): Returns the start time of the given discussion section.

• get students(disc): Returns the list of students enrolled in the given

discussion section.

2.1 Implement add student, which takes in a discussion section and a string

representing a student’s name, and returns a new discussion with the new

student added to the roster. The list of students for the new discussion

should be a new list. Remember to use the constructor and selectors!

def add_student(disc, student):

""" Adds a student to this discussion.

>>> disc = make_discussion("Chris", 4, ["Abhinav", "Brian"])

>>> new_disc = add_student(disc, "Carl")

>>> get_students(new_disc)

["Abhinav", "Brian", "Carl"]

>>> get_students(disc)

["Abhinav", "Brian"]

"""



4 Data Abstraction & Sequences

3 Abstraction Violations
Notice how we did not need to know how the constructors and selectors in

the previous section were implemented in order to use them. This is what we

mean by the implementation and use of an abstract data type being separate.

In fact, you should never assume anything about how the constructors and

selectors for an abstract data type are implemented. Doing so is called a

data abstraction violation.

As an example, here is one implemenation for the rational constructor.

def rational(n, d):

return [n, d]

Given this constructor, the following would be considered a data abstraction

violation:

>>> frac1 = rational(3, 4)

>>> frac2 = rational(5, 6)

>>> frac1[0] * frac2[0]

15

This is because we assumed rationals were represented as lists instead of

accessing their elements using the selectors.

The TAs have decided to reveal the implementation of the discussion section

ADT. Use these function definitions to answer the next two questions:

def make_discussion(ta, time, students):

return [name, time, students]

def get_ta(disc):

return disc[0]

def get_time(disc):

return disc[1]

def get_students(disc):

return disc[2]



Data Abstraction & Sequences 5

3.1 The TAs have written the following code using the above data abstraction.

However, it contains some abstraction violations. Underline each occurence

of an abstraction violation. Then, if possible, write the correct line of code

to the right.

def check_start(disc1, disc2):

"""Checks whether disc1 and disc2 have the same starting time."""

return disc1[1] == disc2[1]:

def print_students(disc):

"""Prints the name of each student in the discussion."""

for student in disc[2]:

print(student)

def print_duplicates(disc1, disc2):

"""Prints each student that attended both disc1 and disc2."""

students_1, students_2 = get_students(disc1), get_students(disc2)

for i in range(len(students_1)):

if students_1[i] in students_2:

print(students_1[i])

3.2 A disgruntled student makes changes to the discussion data abstraction in an

attempt to disrupt the TAs’ ability to run section. The new implementation

is as follows:

def make_discussion(ta, time, students):

return {"ta" : ta, "time" : time, "students" : students}

def get_ta(disc):

return disc["ta"]

def get_time(disc):

return disc["time"]

def get_students(disc):

return disc["students"]

Would the code in the previous question, with the corrections you made,

still work with these changes? Would the code before removing abstraction

violations still work?



6 Data Abstraction & Sequences

4 Codewriting With Lists
Questions

4.1 Write a procedure merge(s1, s2) which takes two sorted (smallest value

first) lists and returns a single list with all of the elements of the two lists,

in ascending order. Use recursion.

Hint: If you can figure out which list has the smallest element out of both,

then we know that the resulting merged list will have that smallest element,

followed by the merge of the two lists with the smallest item removed. Don’t

forget to handle the case where one list is empty!

def merge(s1, s2):

""" Merges two sorted lists

>>> merge([1, 3], [2, 4])

[1, 2, 3, 4]

>>> merge([1, 2], [])

[1, 2]

"""



Data Abstraction & Sequences 7

4.2 Consider the subset sum problem: you are given a list of integers and a

number k. Is there a subset of the list that adds up to k? For example:

>>> subset_sum([2, 4, 7, 3], 5) # 2 + 3 = 5

True

>>> subset_sum([1, 9, 5, 7, 3], 2)

False

>>> subset_sum([1, 1, 5, -1], 3)

False

Note: You can use the in operator to determine if an element belongs to a

list:

>>> 3 in [1, 2, 3]

True

>>> 4 in [1, 2, 3]

False

def subset_sum(seq, k):


	List Comprehensions
	Data Abstraction
	Abstraction Violations
	Codewriting With Lists

