CS 61A Trees, Mutation, and Nonlocal
Spl‘iﬂg 2019 Discussion d: February 27, 2019

1 Trees

In computer science, trees are recursive data structures that are widely used in
various settings. The diagram to the right is an example of a tree.

Notice that the tree branches downward. In computer science, the root of a tree

starts at the top, and the leaves are at the bottom.
Some terminology regarding trees:

e Parent node: A node that has branches. Parent nodes can have multiple

branches.

e Child node: A node that has a parent. A child node can only belong to one
parent.

e Root: The top node of the tree. In our example, the node that contains 7 is
the root.

e Label: The value at a node. In our example, all of the integers are values.

e Leaf: A node that has no branches. In our example, the nodes that contain
—4,0, 6, 17, and 20 are leaves.

e Branch: A subtree of the root. Note that trees have branches, which are

trees themselves: this is why trees are recursive data structures.

e Depth: How far away a node is from the root. In other words, the number
of edges between the root of the tree to the node. In the diagram, the node
containing 19 has depth 1; the node containing 3 has depth 2. Since there are
no edges between the root of the tree and itself, the depth of the root is 0.

e Height: The depth of the lowest leaf. In the diagram, the nodes containing
—4, 0, 6, and 17 are all the “lowest leaves,” and they have depth 4. Thus, the
entire tree has height 4.

In computer science, there are many different types of trees. Some vary in the
number of branches each node has; others vary in the structure of the tree.

1.1

2 Trees, Mutation, and Nonlocal

Implementation

A tree has both a value for the root node and a sequence of branches, which are
also trees. In our implementation, we represent the branches as a list of trees. Since
a tree is an abstract data type, our choice to use lists is just an implementation
detail.

e The arguments to the constructor tree are the value for the root node and a

list of branches.

e The selectors for these are label and branches.

Note that branches returns a list of trees and not a tree directly. It’s important to

distinguish between working with a tree and working with a list of trees.

We have also provided a convenience function, is_leaf.

Let’s try to create the tree below.

(D
(3) (2
O © ©
Example tree construction
t = tree(1,
[tree(3,
[tree(4),
tree(5),
tree(6)]),
tree(2)])

Questions

Write a function that returns the height of a tree. Recall that the height of a tree
is the length of the longest path from the root to a leaf.

def height(t):
"""Return the height of a tree.

>>> t = tree(3, [tree(5, [tree(1)]1), tree(2)1)
>>> height(t)
2

Trees, Mutation, and Nonlocal 3

1.2 Write a function that takes in a tree and squares every value. It should return a
new tree. You can assume that every item is a number.

def square_tree(t):
"""Return a tree with the square of every element in t
>>> numbers = tree(1,
[tree(2,
[tree(3),
tree(4)]),
tree(5,
[tree(6,
[tree(7)]),
tree(8)1)1)
>>> print_tree(square_tree(numbers))

1.3 Write a function that returns the largest number in a tree.

def tree_max(t):

"""Return the maximum label in a tree.

>>> t = tree(4, [tree(2, [tree(1)]), tree(10)1)
>>> tree_max(t)
10

4 Trees, Mutation, and Nonlocal

1.4 Write a function that takes in a tree and a value x and returns a list containing the
nodes along the path required to get from the root of the tree to a node containing

X.

If x is not present in the tree, return None. Assume that the entries of the tree are

unique.

For the following tree, find_path(t, 5) should return [2, 7, 6, 5]

5

def find_path(tree, x):
>>> t = tree(2, [tree(7, [tree(3), tree(6, [tree(5), tree(11)1)]), tree(15)1)
>>> find_path(t, 5)
[2, 7, 6, 5]
>>> find_path(t, 10) # returns None

if

return

path =

if

return

Trees, Mutation, and Nonlocal 5

2 Mutation

Let’s imagine you order a mushroom and cheese pizza from La Val’s, and that they

represent your order as a list:

>>> pizza = ['cheese', mushrooms']

A couple minutes later, you realize that you really want onions on the pizza. Based
on what we know so far, La Val’s would have to build an entirely new list to add

onions:

>>> pizza = ['cheese', mushrooms']

>>> new_pizza = pizza + ['onions'] # creates a new python list
>>> new_pizza

['cheese', mushrooms', 'onions']

>>> pizza # the original list is unmodified

['cheese', 'mushrooms']

This is silly, considering that all La Val’s had to do was add onions on top of pizza

instead of making an entirely new pizza.

We can fix this issue with list mutation. In Python, some objects, such as lists
and dictionaries, are mutable, meaning that their contents or state can be changed
over the course of program execution. Other objects, such as numeric types, tuples,

and strings, are immutable, meaning they cannot be changed once they are created.

Therefore, instead of building a new pizza, we can just mutate pizza to add some

onions!

>>> pizza.append('onions')
>>> pizza

['cheese', 'mushrooms', 'onions']

append is what’s known as a method, or a function that belongs to an object, so
we have to call it using dot notation. We’ll talk more about methods later in the

course, but for now, here’s a list of useful list mutation methods:
1. append(el): Adds el to the end of the list
2. extend(lst): Extends the list by concatenating it with 1st

3. insert(i, el): Insert el at index i (does not replace element but adds a new

one)
4. remove(el): Removes the first occurrence of el in list, otherwise errors
5. pop(i): Removes and returns the element at index i

We can also use the familiar indexing operator with an assignment statement to
change an existing element in a list. For example, we can change the element at
index 1 and to ’tomatoes’ like so:

>>> pizzal[1] = 'tomatoes'
>>> pizza
['cheese', 'tomatoes', 'onions']

6 Trees, Mutation, and Nonlocal

Questions

2.1 What would Python display? In addition to giving the output, draw the box and

pointer diagrams for each list to the right.

>>> 1st1 = [1, 2, 3]
>>> 1st2 = 1stl
>>> 1st1 is 1st2

>>> 1st2.extend([5, 6])
>>> 1st1[4]

>>> 1st1.append([-1, @, 11)
>>> -1 in 1st2

>>> 1st2[5]

>>> 1st3 = 1st2[:]
>>> 1st3.insert(3, 1lst2.pop(3))
>>> len(1lst1)

>>> 1st1[4] is 1st3[6]
>>> 1st3[1st2[4]1[1]1]
>>> 1st1[:3] is 1st2[:3]

>>> 1st1[:3] == 1st3[:3]

Trees, Mutation, and Nonlocal 7

2.2 Write a function that takes in a value x, a value el, and a list and adds as many
el’s to the end of the list as there are x’s. Make sure to modify the original

list using list mutation techniques.

def add_this_many(x, el, lst):
""" Adds el to the end of 1lst the number of times x occurs
in 1st.
>>> 1st = [1, 2, 4, 2, 1]
>>> add_this_many(1, 5, 1lst)
>>> 1st
[1, 2, 4, 2, 1, 5, 5]
>>> add_this_many(2, 2, 1lst)
>>> 1st
[1, 2, 4,2, 1,5,5, 2, 2]

nun

8 Trees, Mutation, and Nonlocal

3 Nonlocal

Until now, you’ve been able to access names in parent frames, but you have not
been able to modify them. The nonlocal keyword can be used to modify a binding
in a parent frame. For example, consider stepper, which uses nonlocal to modify

num:

def stepper(num):
def step():
nonlocal num # declares num as a nonlocal name
num = num + 1 # modifies num in the stepper frame
return num
return step

>>> stepl = stepper(10)

>>> stepl1() # Modifies and returns num

11

>>> stepl1() # num is maintained across separate calls to step
12

>>> step2 = stepper(10) # Each returned step function keeps its own state

>>> step2()
11

As illustrated in this example, nonlocal is useful for maintaining state across dif-
ferent calls to the same function.

However, there are two important caveats with nonlocal names:

e Global names cannot be modified using the nonlocal keyword.

e Names in the current frame cannot be overridden using the nonlocal key-
word. This means we cannot have both a local and nonlocal binding with the

same name in a single frame.

Because nonlocal lets you modify bindings in parent frames, we call functions that

use it mutable functions.

Trees, Mutation, and Nonlocal 9

Questions
3.1 Draw the environment diagram for the following code.

def stepper(num):
def step():
nonlocal num
num = num + 1
return num
return step

s = stepper(3)
s
sO

3.2

10 Trees, Mutation, and Nonlocal

Write a function that takes in a number n and returns a one-argument function.
The returned function takes in a function that is used to update n. It should return

the updated n.

def memory(n):
>>> f = memory(10)
>>> f(lambda x: x * 2)
20
>>> f(lambda x: x - 7)
13
>>> f(lambda x: x > 5)

True

	Trees
	Mutation
	Nonlocal

