
CS 61A Object Oriented Programming
Spring 2019 Discussion 6: March 6, 2019

1 Object Oriented Programming
In a previous lecture, you were introduced to the programming paradigm known

as Object-Oriented Programming (OOP). OOP allows us to treat data as objects -

like we do in real life.

For example, consider the class Student. Each of you as individuals is an instance

of this class. So, a student Angela would be an instance of the class Student.

Details that all CS 61A students have, such as name, year, and major, are called

instance attributes. Every student has these attributes, but their values differ

from student to student. An attribute that is shared among all instances of Student

is known as a class attribute. An example would be the instructors attribute;

the instructor for CS 61A, Professor DeNero, is the same for every student in CS

61A.

All students are able to do homework, attend lecture, and go to office hours. When

functions belong to a specific object, they are said to be methods. In this case,

these actions would be bound methods of Student objects.

Here is a recap of what we discussed above:

• class: a template for creating objects

• instance: a single object created from a class

• instance attribute: a property of an object, specific to an instance

• class attribute: a property of an object, shared by all instances of a class

• method: an action (function) that all instances of a class may perform

2 Object Oriented Programming

Questions
1.1 Below we have defined the classes Professor and Student, implementing some of

what was described above. Remember that we pass the self argument implicitly to

instance methods when using dot-notation. There are more questions on the next

page.

class Student:

students = 0 # this is a class attribute

def __init__(self, name, ta):

self.name = name # this is an instance attribute

self.understanding = 0

Student.students += 1

print("There are now", Student.students, "students")

ta.add_student(self)

def visit_office_hours(self, staff):

staff.assist(self)

print("Thanks, " + staff.name)

class Professor:

def __init__(self, name):

self.name = name

self.students = {}

def add_student(self, student):

self.students[student.name] = student

def assist(self, student):

student.understanding += 1

Object Oriented Programming 3

What will the following lines output?

>>> snape = Professor("Snape")

>>> harry = Student("Harry", snape)

>>> harry.visit_office_hours(snape)

>>> harry.visit_office_hours(Professor("Hagrid"))

>>> harry.understanding

>>> [name for name in snape.students]

>>> Student("Hermione", Professor("McGonagall")).name

>>> [name for name in snape.students]

4 Object Oriented Programming

1.2 We now want to write three different classes, Server, Client, and Email to simulate

email. Fill in the definitions below to finish the implementation! There are more

methods to fill out on the next page.

class Email:

"""Every email object has 3 instance attributes: the

message, the sender name, and the recipient name.

"""

def __init__(self, msg, sender_name, recipient_name):

class Server:

"""Each Server has an instance attribute clients, which

is a dictionary that associates client names with

client objects.

"""

def __init__(self):

self.clients = {}

def send(self, email):

"""Take an email and put it in the inbox of the client

it is addressed to.

"""

def register_client(self, client, client_name):

"""Takes a client object and client_name and adds it

to the clients instance attribute.

"""

Object Oriented Programming 5

class Client:

"""Every Client has instance attributes name (which is

used for addressing emails to the client), server

(which is used to send emails out to other clients), and

inbox (a list of all emails the client has received).

"""

def __init__(self, server, name):

self.inbox = []

def compose(self, msg, recipient_name):

"""Send an email with the given message msg to the

given recipient client.

"""

def receive(self, email):

"""Take an email and add it to the inbox of this

client.

"""

6 Object Oriented Programming

2 Inheritance
Python classes can implement a useful abstraction technique known as inheritance.

To illustrate this concept, consider the following Dog and Cat classes.

class Dog(object):

def __init__(self, name, owner):

self.is_alive = True

self.name = name

self.owner = owner

def eat(self, thing):

print(self.name + " ate a " + str(thing) + "!")

def talk(self):

print(self.name + " says woof!")

class Cat(object):

def __init__(self, name, owner, lives=9):

self.is_alive = True

self.name = name

self.owner = owner

self.lives = lives

def eat(self, thing):

print(self.name + " ate a " + str(thing) + "!")

def talk(self):

print(self.name + " says meow!")

Notice that because dogs and cats share a lot of similar qualities, there is a lot of

repeated code! To avoid redefining attributes and methods for similar classes, we

can write a single superclass from which the similar classes inherit. For example,

we can write a class called Pet and redefine Dog as a subclass of Pet:

class Pet(object):

def __init__(self, name, owner):

self.is_alive = True # It's alive!!!

self.name = name

self.owner = owner

def eat(self, thing):

print(self.name + " ate a " + str(thing) + "!")

def talk(self):

print(self.name)

class Dog(Pet):

def talk(self):

print(self.name + ' says woof!')

Inheritance represents a hierarchical relationship between two or more classes where

one class is a more specific version of the other, e.g. a dog is a pet. Because Dog

inherits from Pet, we didn’t have to redefine init or eat. However, since we want

Dog to talk in a way that is unique to dogs, we did override the talk method.

Object Oriented Programming 7

Questions
2.1 Below is a skeleton for the Cat class, which inherits from the Pet class. To com-

plete the implementation, override the init and talk methods and add a new

lose_life method.

Hint: You can call the init method of Pet to set a cat’s name and owner.

class Cat(Pet):

def __init__(self, name, owner, lives=9):

def talk(self):

""" Print out a cat's greeting.

>>> Cat('Thomas', 'Tammy').talk()

Thomas says meow!

"""

def lose_life(self):

"""Decrements a cat's life by 1. When lives reaches zero, 'is_alive'

becomes False.

"""

2.2 More cats! Fill in this implemention of a class called NoisyCat, which is just like a

normal Cat. However, NoisyCat talks a lot – twice as much as a regular Cat!

class _____________________: # Fill me in!

"""A Cat that repeats things twice."""

def __init__(self, name, owner, lives=9):

Is this method necessary? Why or why not?

def talk(self):

"""Talks twice as much as a regular cat.

>>> NoisyCat('Magic', 'James').talk()

Magic says meow!

Magic says meow!

"""

8 Object Oriented Programming

Extra Questions
2.3 (Summer 2013 Final) What would Python display?

class A:

def f(self):

return 2

def g(self, obj, x):

if x == 0:

return A.f(obj)

return obj.f() + self.g(self, x - 1)

class B(A):

def f(self):

return 4

>>> x, y = A(), B()

>>> x.f()

>>> B.f()

>>> x.g(x, 1)

>>> y.g(x, 2)

2.4 (Summer 2013 Final) Implement the Foo class so that the following interpreter

session works as expected.

>>> x = Foo(1)

>>> x.g(3)

4

>>> x.g(5)

6

>>> x.bar = 5

>>> x.g(5)

10

class Foo:

	Object Oriented Programming
	Inheritance

