
CS 61A Iterators, Generators, and Streams
Spring 2019 Discussion 10: April 17, 2019

1 Iterators and Generators
>>> a = [1, 2]

>>> a_iter = iter(a)

>>> next(a_iter)

1

>>> next(a_iter)

2

>>> next(a_iter)

StopIteration

An iterable is a data type which contains a collection of values which can be

processed one by one sequentially. Some examples of iterables we’ve seen include

lists, tuples, strings, and dictionaries. In general, any object that can be iterated

over in a for loop can be considered an iterable.

While an iterable contains values that can be iterated over, we need another type of

object called an iterator to actually retrieve values contained in an iterable. Calling

the iter function on an iterable will create an iterator over that iterable. Each

iterator keeps track of its position within the iterable. Calling the next function

on an iterator will give the current value in the iterable and move the iterator’s

position to the next value.

In this way, the relationship between an iterable and an iterator is analogous to the

relationship between a book and a bookmark - an iterable contains the data that is

being iterated over, and an iterator keeps track of your position within that data.

Once an iterator has returned all the values in an iterable, subsequent calls to next

on that iterable will result in a StopIteration exception. In order to be able to

access the values in the iterable a second time, you would have to create a second

iterator.

counts = [1, 2, 3]

for i in counts:

print(i)

items = iter(counts)

while True:

try:

i = next(items)

print(i)

except StopIteration:

break #Exit the while loop

One important application of iterables and iterators is the for loop. We’ve seen

how we can use for loops to iterate over iterables like lists and dictionaries.

This only works because the for loop implicitly creates an iterator using the built-

in iter function. Python then calls next repeatedly on the iterator, until it raises

StopIteration.

The code to the right shows how we can mimic the behavior of for loops using

while loops.

Note that most iterators are also iterables - that is, calling iter on them will return

an iterator. This means that we can use them inside for loops. However, calling

iter on most iterators will not create a new iterator - instead, it will simply return

the same iterator.

We can also iterate over iterables in a list comprehension or pass in an iterable to

the built-in function list in order to put the items of an iterable into a list.

In addition to the sequences we’ve learned, Python has some built-in ways to create

iterables and iterators. Here are a few useful ones:

• range(start, end) returns an iterable containing numbers from start to end-

1. If start is not provided, it defaults to 0.



2 Iterators, Generators, and Streams

• map(f, iterable) returns a new iterator containing the values resulting from

applying f to each value in iterable.

• filter(f, iterable) returns a new iterator containing only the values in

iterable for which f(value) returns True.

Questions
1.1 What would Python display? If a StopIteration Exception occurs, write StopIteration,

and if another error occurs, write Error.

>>> lst = [6, 1, "a"]

>>> next(lst)

>>> lst_iter = iter(lst)

>>> next(lst_iter)

>>> next(lst_iter)

>>> next(iter(lst))

>>> [x for x in lst_iter]

Generators
>>> def gen_naturals():

... current = 0

... while True:

... yield current

... current += 1

>>> gen = gen_naturals()

>>> gen

<generator object gen at ...>

>>> next(gen)

0

>>> next(gen)

1

A generator function is a special kind of Python function that uses a yield

statement instead of a return statement to report values. When a generator

function is called, it returns a generator object, which is a type of iterator. To the

right, you can see a function that returns an iterator over the natural numbers.

The yield statement is similar to a return statement. However, while a return

statement closes the current frame after the function exits, a yield statement causes

the frame to be saved until the next time next is called, which allows the generator

to automatically keep track of the iteration state.

Once next is called again, execution resumes where it last stopped and continues

until the next yield statement or the end of the function. A generator function can

have multiple yield statements.

Including a yield statement in a function automatically tells Python that this

function will create a generator. When we call the function, it returns a generator

object instead of executing the body. When the generator’s next method is called,

the body is executed until the next yield statement is executed.



Iterators, Generators, and Streams 3

>>> square = lambda x: x*x

>>> def many_squares(s):

... for x in s:

... yield square(x)

... yield from map(square, s)

...

>>> list(many_squares([1, 2, 3]))

[1, 4, 9, 1, 4, 9]

When yield from is called on an iterator, it will yield every value from that iter-

ator. It’s similar to doing the following:

for x in an_iterator:

yield x

The example to the right demonstrates different ways of computing the same result.

Questions
1.1 What would Python display? If a StopIteration Exception occurs, write StopIteration,

or if another error occurs, write Error.

>>> def weird_gen(x):

... if x % 2 == 0:

... yield x * 2

... else:

... yield x

... yield from weird_gen(x - 1)

>>> next(weird_gen(2))

>>> list(weird_gen(3))

>>> def greeter(x):

... while x % 2 != 0:

... print('hello!')

... yield x

... print('goodbye!')

>>> greeter(5)

>>> gen = greeter(5)

>>> next(gen)

>>> next(gen)



4 Iterators, Generators, and Streams

1.2 Implement filter link, which takes in a linked list link and a function f and

returns a generator which yields the values of link for which f returns True.

Try to implement this both using a while loop and without using any form of

iteration.

def filter_link(link, f):

"""

>>> link = Link(1, Link(2, Link(3)))

>>> g = filter_link(link, lambda x: x % 2 == 0)

>>> next(g)

2

>>> next(g)

StopIteration

>>> list(filter_link(link, lambda x: x % 2 != 0))

[1, 3]

"""

while _________________________:

if ________________________:

_______________________

___________________________

def filter_no_iter(link, f):

"""

>>> link = Link(1, Link(2, Link(3)))

>>> list(filter_no_iter(link, lambda x: x % 2 != 0))

[1, 3]

"""

if ____________________________:

return

elif __________________________:

___________________________

_______________________________



Iterators, Generators, and Streams 5

1.3 Implement sum paths gen, which takes in a Tree instance t and and returns a gen-

erator which yields the sum of all the nodes from a path from the root of a tree to

a leaf.

You may yield the sums in any order.

def sum_paths_gen(t):

"""

>>> t1 = Tree(5)

>>> next(sum_paths_gen(t1))

5

>>> t2 = Tree(1, [Tree(2, [Tree(3), Tree(4)]), Tree(9)])

>>> sorted(sum_paths_gen(t2))

[6, 7, 10]

"""

if ___________________________:

yield ____________________

for __________________________:

for __________________________:

yield ____________________



6 Iterators, Generators, and Streams

2 Streams
In Python, we can use iterators to represent infinite sequences (for example, the

generator for all natural numbers). However, Scheme does not support iterators.

Let’s see what happens when we try to use a Scheme list to represent an infinite

sequence of natural numbers:

scm> (define (naturals n)

(cons n (naturals (+ n 1))))

naturals

scm> (naturals 0)

Error: maximum recursion depth exceeded

Because cons is a regular procedure and both its operands must be evaluted before

the pair is constructed, we cannot create an infinite sequence of integers using a

Scheme list.

Instead, our Scheme interpreter supports streams, which are lazy Scheme lists. The

first element is represented explicitly, but the rest of the stream’s elements are

computed only when needed. Computing a value only when it’s needed is also

known as lazy evaluation.

scm> (define (naturals n)

(cons-stream n (naturals (+ n 1))))

naturals

scm> (define nat (naturals 0))

nat

scm> (car nat)

0

scm> (cdr nat)

#[promise (not forced)]

scm> (car (cdr-stream nat))

1

scm> (car (cdr-stream (cdr-stream nat)))

2

We use the special form cons-stream to create a stream:

(cons-stream <operand1> <operand2>)

cons-stream is a special form because the second operand is not evaluated when

evaluating the expression. To evaluate this expression, Scheme does the following:

1. Evaluate the first operand.

2. Construct a promise containing the second operand.

3. Return a pair containing the value of the first operand and the promise.

To actually get the rest of the stream, we must call cdr-stream on it to force

the promise to be evaluated. Note that this argument is only evaluated once and

is then stored in the promise; subsequent calls to cdr-stream returns the value

without recomputing it. This allows us to efficiently work with infinite streams like



Iterators, Generators, and Streams 7

the naturals example above. We can see this in action by using a non-pure function

to compute the rest of the stream:

scm> (define (compute-rest n)

...> (print 'evaluating!)

...> (cons-stream n nil))

compute-rest

scm> (define s (cons-stream 0 (compute-rest 1)))

s

scm> (car (cdr-stream s))

evaluating!

1

scm> (car (cdr-stream s))

1

Here, the expression compute-rest 1 is only evaluated the first time cons-stream

is called, so the symbol evaluating! is only printed the first time.

When displaying a stream, the first element of the stream and the promise are

displayed separated by a dot (this indicates that they are part of the same pair,

with the promise as the cdr). If the value in the promise has not been evaluated

by calling cdr-stream, we consider it to be not forced. Otherwise, we consider it

forced.

scm> (define s (cons-stream 1 nil))

s

scm> s

(1 . #[promise (not forced)])

scm> (cdr-stream s) ; nil

()

scm> s

(1 . #[promise (forced)])

Streams are very similar to Scheme lists in that they are also recursive structures.

Just like the cdr of a Scheme list is either another Scheme list or nil, the cdr-stream

of a stream is either a stream or nil. The difference is that whereas both arguments

to cons are evaluated upon calling cons, the second argument to cons-stream isn’t

evaluated until the first time that cdr-stream is called.

Here’s a summary of what we just went over:

• nil is the empty stream

• cons-stream constructs a stream containing the value of the first operand and

a promise to evaluate the second operand

• car returns the first element of the stream

• cdr-stream computes and returns the rest of stream



8 Iterators, Generators, and Streams

Questions
2.1 What would Scheme display?

scm> (define (has-even? s)

(cond ((null? s) #f)

((even? (car s)) #t)

(else (has-even? (cdr-stream s)))))

has-even?

scm> (define (f x) (* 3 x))

f

scm> (define nums (cons-stream 1 (cons-stream (f 3) (cons-stream (f 5) nil))))

nums

scm> nums

scm> (cdr-stream nums)

scm> nums

scm> (define (f x) (* 2 x))

f

scm> (cdr-stream nums)

scm> (cdr-stream (cdr-stream nums))

scm> (has-even? nums)

2.2 Write a function slice which takes in a stream s, a start, and an end. It should

return a Scheme list that contains the elements of s between index start and end,

not including end. If the stream ends before end, you can return nil.

(define (slice s start end)

scm> (define nat (naturals 0)) ; See naturals procedure defined earlier

nat

scm> (slice nat 4 12)

(4 5 6 7 8 9 10 11)



Iterators, Generators, and Streams 9

2.3 Since streams only evaluate the next element when they are needed, we can combine

infinite streams together for interesting results! Use it to define a few of our favorite

sequences. We’ve defined the function combine-with for you below, as well as an

example of how to use it to define the stream of even numbers.

(define (combine-with f xs ys)

(if (or (null? xs) (null? ys))

nil

(cons-stream

(f (car xs) (car ys))

(combine-with f (cdr-stream xs) (cdr-stream ys)))))

scm> (define evens (combine-with + (naturals 0) (naturals 0)))

evens

scm> (slice evens 0 10)

(0 2 4 6 8 10 12 14 16 18)

For these questions, you may use the naturals stream in addition to combine-with.

i. (define factorials

scm> (slice factorials 0 10)

(1 1 2 6 24 120 720 5040 40320 362880)

(Continued on next page)



10 Iterators, Generators, and Streams

ii. (define fibs

scm> (slice fibs 0 10)

(0 1 1 2 3 5 8 13 21 34)

iii. (Extra for practice) Write exp, which returns a stream where the nth term

represents the degree-n polynomial expantion for ex, which is
∑n

i=0 x
i/i!.

You may use factorials in addition to combine-with and naturals in your

solution.

(define (exp x)

scm> (slice (exp 2) 0 5)

(1 3 5 6.333333333 7 7.266666667)


	Iterators and Generators
	Streams

