
CS 61A OOP, Nonlocal, Trees, LLs, Growth
Spring 2019 Guerrilla Section 3: March 16, 2019

1 OOP
Questions

1.1 What is the relationship between a class and an ADT?

1.2 What is the definition of a Class? What is the definition of an Instance?

1.3 What is a Class Attribute? What is an Instance Attribute?

1.4 What Would Python Display?

class Foo():

x = 'bam'

def __init__(self, x):

self.x = x

def baz(self):

return self.x

class Bar(Foo):

x = 'boom'

def __init__(self, x):

Foo.__init__(self, 'er' + x)

def baz(self):

return Bar.x + Foo.baz(self)

foo = Foo('boo')

Foo.x

foo.x

foo.baz()



2 OOP, Nonlocal, Trees, LLs, Growth

Foo.baz()

Foo.baz(foo)

bar = Bar('ang')

Bar.x

bar.x

bar.baz()

1.5 What Would Python Display?

class Student:

def __init__(self, subjects):

self.current_units = 16

self.subjects_to_take = subjects

self.subjects_learned = {}

self.partner = None

def learn(self, subject, units):

print('I just learned about ' + subject)

self.subjects_learned[subject] = units

self.current_units -= units

def make_friends(self):

if len(self.subjects_to_take) > 3:

print('Whoa! I need more help!')

self.partner = Student(self.subjects_to_take[1:])

else:

print('I'm on my own now!')

self.partner = None

def take_course(self):

course = self.subjects_to_take.pop()

self.learn(course, 4)

if self.partner:

print(?I need to switch this up!?)

self.partner = self.partner.partner

if not self.partner:

print('I have failed to make a friend :(')

tim = Student(['Chem1A', 'Bio1B', 'CS61A', 'CS70', 'CogSci1'])

tim.make_friends()

print(tim.subjects_to_take)



OOP, Nonlocal, Trees, LLs, Growth 3

tim.partner.make_friends()

tim.take_course()

tim.partner.take_course()

tim.take_course()

tim.make_friends()



4 OOP, Nonlocal, Trees, LLs, Growth

2 Nonlocal
Questions

2.1 Draw an environment diagram for the following code:

ore = "settlers"

def sheep(wood):

def ore(wheat):

nonlocal ore

ore = wheat

ore(wood)

return ore

sheep(lambda wood: ore)("wheat")



OOP, Nonlocal, Trees, LLs, Growth 5

2.2 Draw an environment diagram for the following code:

aang = 120

def airbend(zuko):

aang = 2

def katara(aang):

nonlocal zuko

zuko = lambda sokka : aang + 4

return aang

if zuko(10) == 1:

katara(aang + 9)

return zuko(airbend)

airbend(lambda x: aang + 1)



6 OOP, Nonlocal, Trees, LLs, Growth

2.3 Write make max finder, which takes in no arguments but returns a function which

takes in a list. The function it returns should return the maximum value it?s been

called on so far, including the current list and any previous list. You can assume

that any list this function takes in will be nonempty and contain only non-negative

values.

def make_max_finder():

"""

>>> m = make_max_finder()

>>> m([5, 6, 7])

7

>>> m([1, 2, 3])

7

>>> m([9])

9

>>> m2 = make_max_finder()

>>> m2([1])

1

"""



OOP, Nonlocal, Trees, LLs, Growth 7

3 Object Oriented Trees
Questions

3.1 Define filter tree, which takes in a tree t and one argument predicate function fn.

It should mutate the tree by removing all branches of any node where calling fn on

its label returns False. In addition, if this node is not the root of the tree, it should

remove that node from the tree as well.

def filter_tree(t, fn):

"""

>>> t = Tree(1, [Tree(2), Tree(3, [Tree(4)]), Tree(6, [Tree(7)])])

>>> filter_tree(t, lambda x: x % 2 != 0)

>>> t

tree(1, [Tree(3)])

>>> t2 = Tree(2, [Tree(3), Tree(4), Tree(5)])

>>> filter_tree(t2, lambda x: x != 2)

>>> t2

Tree(2)

"""

3.2 Fill in the definition for nth level tree map, which also takes in a function and a

tree, but mutates the tree by applying the function to every nth level in the tree,

where the root is the 0th level.

def nth_level_tree_map(fn, tree, n):

"""Mutates a tree by mapping a function all the elements of a tree.

>>> tree = Tree(1, [Tree(7, [Tree(3), Tree(4), Tree(5)]),

Tree(2, [Tree(6), Tree(4)])])

>>> nth_level_tree_map(lambda x: x + 1, tree, 2)

>>> tree

Tree(2, [Tree(7, [Tree(4), Tree(5), Tree(6)]),

Tree(2, [Tree(7), Tree(5)])])

"""



8 OOP, Nonlocal, Trees, LLs, Growth

4 Linked Lists
Questions

4.1 What is a linked list? Why do we consider it a naturally recursive structure?

4.2 Draw a box and pointer diagram for the following:

Link('c', Link(Link(6, Link(1, Link('a'))), Link('s')))

4.3 The Link class can represent lists with cycles. That is, a list may contain itself as a

sublist. Implement has cycle that returns whether its argument, a Link instance,

contains a cycle. There are two ways to do this: iteratively with two pointers, or

keeping track of Link objects we’ve seen already. Try to come up with both!

def has_cycle(link):

"""

>>> s = Link(1, Link(2, Link(3)))

>>> s.rest.rest.rest = s

>>> has_cycle(s)

True

"""

4.4 Fill in the following function, which checks to see if sub link, a particular sequence

of items in one linked list, can be found in another linked list (the items have to be

in order, but not necessarily consecutive).

def seq_in_link(link, sub_link):

"""

>>> lnk1 = Link(1, Link(2, Link(3, Link(4))))

>>> lnk2 = Link(1, Link(3))

>>> lnk3 = Link(4, Link(3, Link(2, Link(1))))

>>> seq_in_link(lnk1, lnk2)

True

>>> seq_in_link(lnk1, lnk3)

False

"""



OOP, Nonlocal, Trees, LLs, Growth 9

5 Growth
Questions

5.1 What is the runtime of the following function?

def one(n):

if 1 == 1:

return None

return n

a. Theta(1) b. Theta(log n) c. Theta(n) d. Theta(nˆ2) e. Theta(2ˆn)

5.2 What is the runtime of the following function?

def two(n):

for i in range(n):

print(n)

a. Theta(1) b. Theta(log n) c. Theta(n) d. Theta(nˆ2) e. Theta(2ˆn)

5.3 What is the runtime of the following function?

def three(n):

while n > 0:

n = n // 2

a. Theta(1) b. Theta(log n) c. Theta(n) d. Theta(nˆ2) e. Theta(2ˆn)

5.4 What is the runtime of the following function?

def four(n):

for i in range(n):

for j in range(i):

print(str(i), str(j))

a. Theta(1) b. Theta(log n) c. Theta(n) d. Theta(nˆ2) e. Theta(2ˆn)

5.5 What is the runtime of the following function?

def five(n):

if n <= 0:

return 1

return five(n - 1) + five(n - 2)

a. Theta(1) b. Theta(log n) c. Theta(n) d. Theta(nˆ2) e. Theta(2ˆn)

5.6 What is the runtime of the following function?

def five(n):

if n <= 0:

return 1

return five(n//2) + five(n//2)

a. Theta(1) b. Theta(log n) c. Theta(n) d. Theta(nˆ2) e. Theta(2ˆn)


	OOP
	Nonlocal
	Object Oriented Trees
	Linked Lists
	Growth

