
CS 61A Scheme, Exceptions
Spring 2019 Guerrilla Section 4: April 6, 2019

1 Scheme
Questions

1.1 What will Scheme output? Draw the box and pointer whenever the expression

evaluates to some pair or list.

> (or 'false (/ 1 0) 'true)

> '(1 2 3)

> (cons 2 '())

> (cons 1 (cons 2 '()))

> (cadar '((1 2) 3 (4 5)))

> (caddr '((1 2) 3 (4 5)))

> (cddar '((1 2) 3 (4 5)))

> (cddr '((1 2) 3 (4 5)))

1.2 Spot the bug(s). Test out the code and your fixes in the scheme interpreter!

(https://scheme.cs61a.org/)

(define (sum-every-other lst)

(cond ((null? lst) lst)

(else (+ (cdr lst)

(sum-every-other (caar lst)) )))

1.3 Define append, which takes in two lists and concatenates them together.

> (append '(1 2 3) '(4 5 6))

(1 2 3 4 5 6)



2 Scheme, Exceptions

1.4 Define reverse. You may use append in your definition.

> (reverse '(1 2 3))

(3 2 1)

1.5 Define reverse without using append. (Hint: use a helper function and cons)

1.6 Define add-to-all, which takes in an item and a list of lists, and adds that item to

the front of each nested list.

> (add-to-all 'foo '((1 2) (3 4) (5 6)))

((foo 1 2) (foo 3 4) (foo 5 6))

1.7 Define map, which takes in a function and a list, and applies that function to each

item in the list.

> (map (lambda (x) (+ x 1)) '(1 2 3))

(2 3 4)

1.8 Define add-to-all using one call to map. (Hint: consider using a lambda expres-

sion!)

1.9 Define sublists. (Hint: use add-to-all)

> (sublists '(1 2 3))

(() (3) (2) (2 3) (1) (1 3) (1 2) (1 2 3))

1.10 Define sixty-ones, a funcion that takes in a list and returns the number of times

that 1 follows 6 in the list.

> (sixty-ones '(4 6 1 6 0 1))

1

> (sixty-ones '(1 6 1 4 6 1 6 0 1))

2

> (sixty-ones '(6 1 6 1 4 6 1 6 0 1))

3



Scheme, Exceptions 3

1.11 Define no-elevens, a function that takes in a number n, and returns a list of all

distinct length-n lists of 1s and 6s that do not contain two consecutive 1s.

> (no-elevens 2)

((6 6) (6 1) (1 6))

> (no-elevens 3)

((6 6 6) (6 6 1) (6 1 6) (1 6 6) (1 6 1))

> (no-elevens 4)

((6 6 6 6) (6 6 6 1) (6 6 1 6) (6 1 6 6) (6 1 6 1) (1 6 6 6) (1 6 6 1) (1 6 1 6))



4 Scheme, Exceptions

2 Exceptions
Questions

2.1 How do we raise exceptions in Python?

2.2 How do we handle raised exceptions? And why would we need to do so?


	Scheme
	Exceptions

