
CS 61A
Interpreters, Tail Calls, Macros, Streams, Itera-
tors
Spring 2019 Guerrilla Section 5: April 20, 2019

1 Interpreters
Questions

1.1 Determine the number of calls to scheme eval and the number of calls to scheme apply

for the following expressions.

> (+ 1 2)

3

> (if 1 (+ 2 3) (/ 1 0))

5

> (or #f (and (+ 1 2) `apple) (- 5 2))

apple

> (define (add x y) (+ x y))

add

> (add (- 5 3) (or 0 2))

2



2

Interpreters, Tail Calls, Macros, Streams, Iterators

2 Tail Calls
Questions

2.1 For the following procedures, determine whether or not they are tail recursive. If

they are not, write why not and rewrite the function to be tail recursive on the

right.

; Multiplies x by y

(define (mult x y)

(if (= 0 y)

0

(+ x (mult x (- y 1))))

; Always evaluates to true

; assume n is positive

(define (true1 n)

(if (= n 0)

#t

(and #t (true1 (- n 1)))))

; Always evaluates to true

; assume n is positive

(define (true2 n)

(if (= n 0)

#t

(or (true2 (- n 1)) #f)))

; Returns true if x is in lst

(define (contains lst x)

(cond

((null? lst) #f)

((equal? (car lst) x) #t)

((contains (cdr lst) x) #t)

(else #f)))



Interpreters, Tail Calls, Macros, Streams, Iterators 3

2.2 Tail recursively implement sum-satisfied-k which, given an input list lst, a pred-

icate procedure f which takes in one argument, and an integer k, will return the

sum of the first k elements that satisfy f. If there are not k such elements, return

0.

; Doctests

scm> (define lst `(1 2 3 4 5 6))

scm> (sum-satisfied-k lst even? 2) ; 2 + 4

6

scm> (sum-satisfied-k lst (lambda (x) (= 0 (modulo x 3))) 10)

0

scm> (sum-satisfied-k lst (lambda (x) #t) 0)

0

(define (sum-satisfied-k lst f k)

)

2.3 Tail-recursively implement remove-range which, given one input list lst, and two

nonnegative integers i and j, returns a new list containing the elements of lst in

order, without the elements from index i to index j inclusive. For example, given

the list (0 1 2 3 4), with i = 1 and j = 3, we would return the list (0 4). You may

assume j > i, and j is less than the length of the list. (Hint: you may want to use

the built-in append function, which returns the result of appending the items of

all lists in order into a single well-formed list.)

; Doctests

scm> (remove-range '(0 1 2 3 4) 1 3)

(0 4)

(define (remove-range lst i j)



4

Interpreters, Tail Calls, Macros, Streams, Iterators

3 Macros
Questions

3.1 What will Scheme display? If you think it errors, write Error

> (define-macro (doierror) (/ 1 0))

> (doierror)

> (define x 5)

>(define-macro (evaller y) (list (list 'lambda '(x) 'x) y))

> (evaller 2)

3.2 Consider a new special form, when, that has the following structure:

(when <condition> <expr1> <expr2> <expr3> ... )

If the condition is not false (a truthy expression), all the subsequent operands are

evaluated in order and the value of the last expression is returned. Otherwise, the

entire when expression evaluates to okay.

scm> (when (= 1 0)(/1 0) 'error)

okay

scm> (when (= 1 1) (print 6) (print 1) 'a)

6

1

a

Create this new special form using a macro. Recall that putting a dot before the

last formal parameter allows you to pass any number of arguments to a procedure,

a list of which will be bound to the parameter, similar to (*args) in Python.

; implement when without using quasiquotes

(define-macro (when condition . exprs)

(list 'if __________________________________________________________________________________)

; implement when using quasiquotes

(define-macro (when condition . exprs)

`(if __________________________________________________________________________________)



Interpreters, Tail Calls, Macros, Streams, Iterators 5

4 Streams
Questions

4.1 What Would Scheme Display?

> (define a (cons-stream 4 (cons-stream 6 (cons-stream 8 a))))

> (car a)

> (cdr a)

> (cdr-stream a)

> (define b (cons-stream 10 a))

> (cdr b)

> (cdr-stream b)

> (define c (cons-stream 3 (cons-stream 6)))

> (cdr-stream c)

4.2 Write a function merge that takes in two sorted infinite streams and returns a new

infinite stream containing all the elements from both streams, in sorted order.

(define (merge s1 s2)

)



6

Interpreters, Tail Calls, Macros, Streams, Iterators

5 Iterators
Questions

5.1 What is the definition of an iterable? What is the definition of an iterator? What

is the definition of a generator?

5.2 What Would Python Display?

>>> def g(n):

while n > 0:

if n % 2 == 0:

yield n

else:

print('odd')

n -= 1

>>> t = g(4)

>>> t

>>> next(t)

>>> n

>>> t = g(next(t) + 5)

>>> next(t)



Interpreters, Tail Calls, Macros, Streams, Iterators 7

5.3 Write a generator function textbfgen inf that returns a generator which yields all

the numbers in the provided list one by one in an infinite loop.

>>> t = gen_inf([3, 4, 5])

>>> next(t)

3

>>> next(t)

4

>>> next(t)

5

>>> next(t)

3

>>> next(t)

4

def gen_inf(lst):

5.4 Write a function nested gen which, when given a nested list of iterables (including

generators) lst, will return a generator that yields all elements nested within lst in

order. Assume you have already implemented is iter, which takes in one argument

and returns True if the passed in value is an iterable and False if it is not.

def nested_gen(lst):

'''

>>> a = [1, 2, 3]

>>> def g(lst):

>>> for i in lst:

>>> yield i

>>> b = g([10, 11, 12])

>>> c = g([b])

>>> lst = [a, c, [[[2]]]]

>>> list(nested_gen(lst))

[1, 2, 3, 10, 11, 12, 2]

'''


	Interpreters
	Tail Calls
	Macros
	Streams
	Iterators

